## THE PRODUCTS OF SO<sub>2</sub> INTERACTION WITH AQUEOUS SOLUTIONS OF METHYLAMINE, BENZYLAMINES, 1,2-DIAMINES AND MORPHOLINE

<u>Ruslan E. Khoma</u><sup>1,2</sup>, Vladimir O. Gelmboldt<sup>3</sup>, Alim A. Ennan<sup>2</sup>, Vyacheslav N. Baumer<sup>4,5</sup>, Aleksander V. Mazepa<sup>6</sup>, Tatiana V. Koksharova<sup>1</sup>

<sup>1</sup>Mechnikov Odessa National University, Dvoryankaya St., 2, Odessa, 65082, Ukraine

<sup>2</sup>Physico-Chemical Institute of Environment and Human' Protection,

Preobrazhenskaya St., 3, Odessa, Ukraine

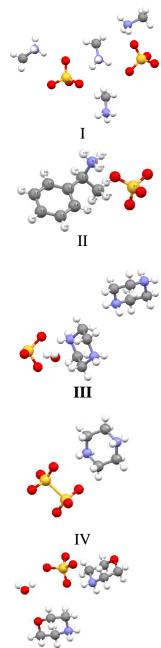
<sup>3</sup>Odessa National Medical University, Valikhovskiy lane, 2, Odessa, Ukraine

<sup>4</sup>Institute of Single Crystals, National Academy of Sciences of Ukraine, Kharkov, Ukraine

<sup>5</sup>Karazin Kharkov National University, Kharkov, Ukraine

<sup>6</sup>Bogatskii Physicochemical Institute, National Academy of Sciences of Ukraine, Odessa, Ukraine

E-mail: rek@onu.edu.ua


The new method of preparation of sulphur oxoanions "onium" salts via interaction in the SO<sub>2</sub>–L–H<sub>2</sub>O–O<sub>2</sub> systems (L is methylamine, benzylamines, 1,2-diamines, and morpholine) has been developed. "Onium" sulfates have been obtained from methylamine, benzylamine,  $\alpha$ -phenylethylamine, N,N-dimethylbenzylamine, dibenzylamine, 1.2-ethylenenediamine, morpholine, N,N,N',N'tetramethylethylenediamine; sulphites monohydrates piperazine and N-(hydroxyethyl)ethylenediamine; dithionate – from piperazine N,N,N',N'-tetramethylethylenediamine. and compounds were characterized by elemental analysis, X-ray diffraction, IR, Raman spectroscopy, mass spectrometry, and differential thermal analysis.

The crystal structures of new salts methylammonium sulphate (I),  $\alpha$ -phenylethylammonium sulfate (II), piperazinium sulphite monohydrate (III) and dithionate (IV), morpholinium sulphate monohydrate (V) have been determined by X-ray diffraction. The structures I – V are stabilized by numerous H-bonds NH···O, OH···O. New examples of stabilization of sulfate anion in the form of alkylammonium salts prepared in the  $SO_2$ –L– $H_2O$ – $O_2$  systems (L were amines) have been demonstrated. The formation of "onium" sulfates is the result of interaction following the formal scheme:

 $2SO_2 + 4R_nNH_{3-n} + 2H_2O + O_2 \rightarrow 2(R_nNH_{4-n})_2SO_4$ .

The fact the structurally studied organic sulfites are exhausted by tetramethylguanidinium hydrosulfite (I) [1] and aminoguanidinium sulfite monohydrate [2], N-(2-hydroxyethyl)ethylenediammonium sulfite monohydrate [3] seems to be due to the ease for the sulfites to convert into dithionates and sulfates as a result of "autooxidation" [4].

- 1. D.J. Heldebrant, C.R. Yonker, P.G. Jessop, L. Phan, Chem.-Eur. J. 15, 7619 (2009).
- 2. R.E. Khoma, V.O. Gelmboldt, V.N. Baumer, et al., Russ. J. Inorg. Chem. 58, 843 (2013).
- 3. R.E. Khoma, V.O. Gelmboldt, O.V. Shishkin, et al., Russ. J. Inorg. Chem. 59, 541 (2014).
- 4. R.E. Khoma, A.A. Ennan, V.O. Gelmboldt, et al., Russ. J. Gen. Chem. 84, 637 (2014).

